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Invited Lecture 

Some flow effects in continuum theory 
for smectic liquid crystals 

by F. M. LESLIE 
Mathematics Department, Strathclyde University, Livingstone Tower, 

Richmond Street, Glasgow, Scotland G1 1XH 

This paper presents a constrained theory for smectic C liquid crystals that may 
be useful for the analysis of some effects in these materials. The theory is based on 
two simplifying assumptions, namely that the layers although deformed remain of 
constant thickness, and also that the tilt with respect to the layer normal remains 
fixed. The equilibrium version of the theory proves to be a non-linear generalization 
of the earlier Orsay theory, and promises to model a number of static effects 
satisfactorily. Here our aim is to examine preliminary predictions based on the 
corresponding dynamic theory, where some progress proves possible for shear flow, 
and also for a shear wave reflection-refraction experiment useful for the measure- 
ment of some viscous coefficients. 

1. Introduction 
Recently Leslie et al. [l] have proposed a continuum theory for smectic C liquid 

crystals that may be useful for the analysis of certain effects in these materials. In order 
to avoid excessive mathematical complexity the theory appeals to two simplifying 
assumptions that clearly restrict its range of applicability. These are that the layers 
although deformable remain of constant thickness, and also that the angle of tilt of the 
molecular alignment with respect to the layer normal remains constant. The former 
certainly appears reasonable in many instances, and the latter also, provided 
pretransitional and thermal effects are not significant. Their theory is non-linear and is 
not restricted to small perturbations of planar layers. 

The theory employs two directors to model smectic C configurations leading to a 
quadratic elastic energy that contains nine terms for non-chiral smectic C liquid 
crystals [2] and eleven terms for chiral materials [3]. In the particular case of small 
distortions of planar layers, this energy reduces identically to that proposed earlier by 
the Orsay Group [4] for such small disturbances. Initial studies of static configurations 
include successful analyses of Dupin [S] and parabolic cyclides [ 6 ]  which go some way 
towards justifying the simplifications employed. More recent investigations of 
equilibrium phenomena include effects in cylindrical layers, either confined in a wedge- 
like gap [7] or between concentric cylinders [S]. The former shows that information 
concerning certain elastic constants may follow from such studies, while the latter 
examines walls induced by the application of a magnetic fiela, the number of walls that 
are possible depending upon the angle of inclination of the field to the cylinder axis. The 
indications are that once problems concerning uniform alignment of smectic C liquid 
crystals are overcome, progress with the static version of this theory may be rather 
good. 
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122 F. M. Leslie 

Here, however, our aim is to examine preliminary predictions based on the 
corresponding dynamic theory. This theory contains twenty dissipative terms in the 
stress tensor, and is therefore proportionally more complex than the static theory. 
However, some progress is possible in discussing the simpler arrangements in shear 
flow, especially when the layers are planar and parallel to the bounding plates. In this 
particular case it is possible to consider both chiral and non-chiral materials, and to 
examine the influence of flow in terms of unwinding the helical twist in chiral smectic C 
liquid crystals. One can equally study the influence of flow upon the bookshelf 
geometry when the shear is within the layers, this analysis being confined to non-chiral 
smectics, but here the predictions appear to raise some questions. While we discuss 
these flow problems below, fuller details are available in a separate paper by Gill and 
Leslie [9] also presented at this Conference. 

One can of course employ this non-linear theory to analyse situations that involve 
small distortions of planar layers, and below we consider one such problem that has 
relevance for viscosity measurements, namely the reflection and refraction of a shear 
wave at a solid-smectic interface. For one particular configuration the analysis is 
straightforward, but in others no solutions are available presumably because the actual 
response is incompatible with the constraints imposed. 

2. Continuum theory 
This section presents a brief account of the rather general constrained continuum 

theory proposed recently by Leslie et al. [ 11 to model simpler aspects of the behaviour 
of non-chiral smectic C liquid crystals. The extension to chiral smectic C materials is 
also indicated. This theory is constrained in that it excludes variations in the layer 
spacing thickness, and also changes in tilt with respect to the layer normal, but it may 
prove useful for the interpretation of certain observations and experiments for this class 
of liquid crystals. 

The layers in a smectic liquid crystal are most readily described by a density wave 
vector a, but the assumption that the layer spacing remains constant implies that this 
vector can without loss of generality be identified with the unit normal to the layers. 
Following de Gennes [lo] the theory employs a second unit vector c perpendicular to a 
to describe the direction of tilt with respect to the layer normal. Hence the two directors 
in the theory are subject to 

a . a = c . c = l ,  a*c=O. (2.1) 

Also, as both Oseen [11] and de Gennes [lo] argue, the vector a in the absence of 
defects in the layering is subject to the constraint 

curl a = 0. (2.2) 
A further constraint arises from the assumption of incompressibility, and thus the 
velocity vector v must satisfy 

div v = 0, (2.3) 
and as a consequence the density p is constant. 

The balance laws of the theory are essentially those of classical continuum 
mechanics, namely the balances of linear and angular momentum. In Cartesian tensor 
notation the former takes the familiar form 

pd, = p F ,  + t i j ,  j ,  
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Invited Lecture: Flow effects for smectic liquid crystals 123 

F denoting the body force per unit mass, t the stress tensor, and the superposed dot the 
material time derivative. However, the latter includes terms commonly disregarded, 
and is 

O=pKi eijktkj+ l i j ,  j (2.5) 
with K denoting the external body moment per unit mass and 1 the couple stress tensor, 
the inertial term being omitted on the grounds that it is in general negligible. Also 
thermal effects are ignored. In the above a repeated index is subject to the summation 
convention, a comma preceding an index denotes a partial derivative with respect to 
the corresponding spatial coordinate, and eijk is the alternator. 

The constitutive relations for stress and couple stress are respectively 

where the pressure p and the vector fi arise from the constraints in equations (2.3) and 
(2.2), respectively, while the energy W takes the form 

2W=K",Ui,Jz K:(CiUi,jCj)2 + 2K;ai,icjaj,kck 

+ K',(ci, i)z  + K',ci, jC i ,  j + K",i, jCjCi ,kCk 

+ 2Kici,  j C j C i , k U k  + 2 K y  Ci, icjaj,kck + 2K?ci, i U j ,  j ,  (2.7) 

where the K s  are simply constants. The tensor? denotes the viscous stress which is the 
sum of a symmetric part 

Gj =@ij + Pia,a,D,,aiaj + p,(Dikakaj + Djkakai) 

+ p3cpcqDpqcicj+ p4(DikCkCj + DjkCkCi)  + p5cpaqDpq(aiCj + ajci) 

+; l , (A,a j+Ajai )+iz (Cic j+  Cjci)+i3cpAp(aicj+ajci) 

+ a,a,Dp,(aicj+ UjCi ) ]  + K,[2apc,Dp,cicj + CpCqDp,(UiCj + UjCi ) ]  

f K,(Dikakcj+ Djkakci + Dikckaj+ Djkckai) + Kz[2apc,Dp,aiaj 

+ z,(Ciaj+ Cjai) +zz(Aicj+ A j c i ) + 2 z 3 c p A p a i a j + 2 ~ 4 ~ p A p ~ i ~ j ,  (2.8) 

and a skew-symmetric part 

(2.10) 

and the coefficients are constants. 
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124 F. M. Leslie 

The intrinsic viscous torque in equation (2.5) can conveniently be expressed as 

eijkc.= eijk(ajg; + cg;), (2.1 1) 

where 

and as a consequence the viscous dissipation inequality can be written as 

(2.12) 

(2.1 3) 

(2.14) 

which imposes restrictions on the various viscous coefficients. Moreover, the relation- 
ship in equation (2.11) allows us to rewrite the balance of angular momentum in 
equation (2.5) as two equations 

and 

(2.1 5) 

(2.16) 

where y, p and z are arbitrary multipliers. The body moment terms are omitted here 
since external moments are not considered in what follows. Also, the balance of linear 
momentum in equation (2.4) can be expressed more conveniently as 

where 

(2.17) 

(2.18) 

this using equations (2.15) and (2.16). The forms of equations (2.1 5), (2.16) and (2.17) are 
in many respects more convenient for the calculations that follow. 

At this point it is perhaps helpful to make some remarks to clarify the physical role 
of the vector p associated with the constraint in equation (2.2). To this end we consider 
planar layers subject to some deformation of the c director, through flow or an external 
body moment, and choose Cartesian axes with a and the z axis coincident. The moments 
acting on the plane of the layers are 

(2.19) 

this using the latter of equations (2.6), or simply 

1,= -B,+ ...) l y = - B y +  ...) 1,=0+ ...) (2.20) 

where we only give the p contributions explicitly. From this we see that these terms 
provide torques acting upon the layers that can balance other moments and so 
maintain the assumed planar forms. More generally, if we assume a particular type of 
layering for geometrical or other reasons, the vector /i can provide a mechanism 
through the couple stress to transmit torques needed to maintain the assumed 
configuration in equilibrium. 
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Invited Lecture: Flow effects for smectic liquid crystals 125 

The extension of the above theory to chiral smectic C liquid crystals is relatively 
straightforward. For this class of liquid crystal we must add to the energy function in 
equation (2.7) two additional terms 

= K",ipqcpaqai, kck + K',eipqcpaqci3 kak, (2.21) 

where the K s  are again constants. However, as Carlsson et al. [3] discuss, there is some 
doubt as to whether we should include the first of the above, since it gives rise to an 
equilibrium configuration not normally attributed to chiral smectic C liquid crystals. 
For this reason we omit it from our calculations. Lastly we note that the corresponding 
viscous stress for chiral smectic C is identical to that for non-chiral smectic C liquid 
crystals. 

The above equations are invariant to the simultaneous change of sign in both 
directors a and c. However, for smectics with a material symmetry that is invariant to 
the independent change of sign of either a or c, the constitutive relations clearly 
simplify, the last three terms in the energy in equation (2.7), and the IC and z terms in 
equations (2.8) and (2.9) being no longer acceptable. 

3. Simple shear flow 
In this section we consider two examples of shear flow that initially appear to be 

compatible with the layer structure assumed. In one case our conclusions are consistent 
with this assumption, but in the other the outcome is perhaps less clear. 

First of all we consider a smectic confined between two parallel plates with the 
smectic layers everywhere parallel to the plates. The lower plate is at rest while the 
upper moves with a velocity Vin a straight line in its own plane. Choosing Cartesian 
axes with the z axis normal to the plates and the x axis parallel to the imposed velocity, 
it is natural to seek solutions of the equations of the previous section of the form 

a = (0, 0, l), c = (cos &), sin 4(z), 0), v = (u(z), u(z), 0). (3.1) 

Clearly this choice is consistent with the constraints of equations (2.1H2.3). Also, for 
this particular problem, our analysis covers both chiral and non-chiral materials. 

f x z = ( q l  +q2cos24)u'+q2 s i n ~ c o s ~ u ' = c , ,  
f y z  = (ql + qz  sin2 4)u' + q2 sin 4 cos 4u' = c2 ,  

For the above choice the equations of linear momentum reduce to 

(3.2) 1 
where the prime denotes differentiation with respect to z ,  c1 and c2 are constants, and 
the viscosities and qz are given by 

2v]1 +p2 -21, + 24, 212 =p4 p5 +212 - 2,23 -k 1 5  + &, (3.3) 

this assuming that the flow is due entirely to the relative motion of the plates, there 
being no imposed pressure gradients. Straightforwardly the equations (3.2) yield 

(3.4) 1 YlI(Yl+ r2)u' = c1(v1+ v z  sinZ 4) - C Z V Z  sin 4 cos 4% 
rll(?l +vz)u'=c2(YI1 +v2cos2 d ) - C 1 ? 2  sin4cos4,  

giving the velocity gradients in terms of the alignment 4 and the applied shears. 
The equations for angular momentum reduce to 

K;@' + ( 2 ,  - z,)(u' sin 4 - u' cos 4) = 0, (3.5) 
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136 F. M. Leslie 

this entailing a choice of the vector fi of the form 

P, = I r l ( Z ) ,  Ir, = B 2 ( 4  P, = 0. (3.6) 

(3.7) 

(3.8) 

However, employing equations (3.4), equation (3.5) becomes 

K;4" + (zl - z5)(c1 sin 4 - c2 cos 4)/ql = 0, 

K;@* + 2(2, - zl)(cl cos 4 + c2 sin 4)/q1 = c3, 

which readily integrates to yield 

where c3 is a constant. 
The boundary conditions to be satisfied are 

~ ( d )  = V; U( - d )  = ~ ( d )  = U( -d)=O,  4 ( d )  = 41, 4( - d ) = 4 2 ,  (3.9) 
where 2d denotes the distance between the plates, the origin having been chosen 
midway between, and 41 and 42 are prescribed angles. Of particular interest with 
regard to chiral materials is the choice 

41= -42=40 (3.10) 

with the twist 4 an odd function of z .  From equations (3.4) and the conditions (3.9), it 
quickly follows that 

(3.1 1) I ql(q1 +v2)F'=c1 (ql + q 2  sin2 4 ) d z - c 2 q 2  

(ql + q2 cos2 #) d z -  clql 

sin 4 cos 4 dz, 
[ : d  l1 d 

L ./: d 
O =  c2 sin Q, cos # dz.  

Naturally our choice of the constants c1 and c2 must be consistent with the above, and 
once the twist has been determined from equation (3.8), these equations essentially 
serve to determine c, and c2 in terms of V; the gapwidth 2d, and the material parameters. 
When the twist is odd, the latter ofequations (3.11) clearly requires c2 to be zero, and the 
former therefore reduces to 

?l(r l l+ v2)V= 2% ( Y 1 +  112 sin2 4) dz, (3.12) s: 
which ultimately relates to c1 to V 

The material parameters in the equations (3.8) and (3.1 1) appear in only three 
combinations, essentially a factor (z, -zl)/K;ql in the former and the two viscosities q1 
and q2 in the latter. Consequently a numerical integration of these equations is 
relatively straightforward, with no need for an excessive selection of values for various 
coefficients. However, since Gill and Leslie [9] present fuller details in another paper, it 
suffices here to summarize their principal results. Primarily they discuss solutions in 
which the twist 4 is either symmetric or asymmetric. For the former the behaviour is 
rather straightforward, the c director tending to flow align with the twist angle 4 either 
tending to zero or n, dependent upon whether z, is greater than or less than zl, in 
agreement with the earlier prediction by Leslie et al. [l]. For the asymmetric solutions 
the results are rather more interesting with the twist in the centre of the cell gradually 
unwinding with increasing shear rate, the flow causing the twist to move out to the 
bounding plates. This prediction appears to be consistent with the earlier observations 
by Pieranski et al. [ 121. Gill and Leslie also discuss predictions for smectic C ,  materials 
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Invited Lecture: Flow efects for smectic liquid crystals 127 

discussed recently by Brand and Pleiner [13], for which the analysis is a special case of 
the above. 

Our second example considers the so-called bookshelf geometry with the imposed 
shear parallel to the smectic layers. Here, therefore, we consider solutions in which 

(3.13) 

which again clearly satisfy the constraints in equations (2.1H2.3). In this case, however, 
it is not possible to include a discussion of chiral materials in our analysis, since this 
would require the inclusion of a y dependence in the twist angle 4 and also presumably 
in the flow components u and v,  which is rather beyond the scope of this study. 

For the above choice, in the absence of any imposed pressure gradients, the 
equations of linear momentum simply yield 

a = (0,1, O), c = (cos 4(z), 0, sin d(z)), v = (u(z), u(z), O), 

t",, = Pl(4)U' + P Z ( 4 ) V '  cos 4 = c1, 

f Y Z  = p3(4)u' + pz(4)u' cos 4 = c2, 
where c1 and c, are again constants, and the viscosity functions are given by 

(3.14) 

(3.15) 

As above we can derive from equations (3.14) expressions for the velocity gradients in 
terms of the twist 4 and the imposed shear stresses. 

For this problem the equations of angular momentum reduce to 

1 df 
2 d4 

f(4)4" +-- (/)"-(A, + h, cos 24)u' -(TI + z5)u'cos 4 = 0, (3.16) 

where 

f ( + ) = K ' , + K ' ,  c o s 2 ~ + K ~ s i n 2 + ,  (3.17) 

but this appears to entail a choice of the vector p of the form 

(3.18) 

and also the scalar y such that 

the prime once more denoting differentiation with respect to z. 
We do not pursue the above analysis at present for essentially two reasons. Firstly 

equations (3.14) and (3.16) involve rather more combinations of viscous and elastic 
coefficients than our previous example, which creates some problems in terms of 
assigning values to the various material constants. Secondly, and perhaps more 
significantly, the y dependence of the vector does imply that the restraining torques 
on the smectic layers become rather large, suggesting that the system may relax by some 
mechanism not considered in the present analysis, the occurrence of a domain structure 
being one possibility. Clearly it would be of interest to have more experimental 
evidence available as to what actually happens in this case, including the influence of 
the induced transverse flow upon the layers. 
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128 F. M. Leslie 

4. Reflection and refraction of a shear wave at a solidsmectic interface 
In this section we present a brief analysis for smectic C liquid crystals of a technique 

that allows the measurement of certain viscous coefficients, the one first used for 
nematics by Martinoty and Candau [14]. For this it suffices to consider a plane 
interface between an isotropic elastic solid and the liquid crystal, and also to assume 
that both the solid and liquid crystal are unbounded, since the other boundaries are of 
no consequence. For a smectic C liquid crystal we assume that initially it is uniformly 
aligned with the layers at an arbitrary angle to the interface, this necessarily restricting 
our analysis to non-chiral materials, and thus referred to appropriate Cartesian axes 
consider 

a = a0 = (0, cos 0, sin 0), c = co = (0, sin 0, - cos Q), (4.1) 
where I9 is a given acute angle, the z axis being normal to the interface and positive into 
the smectic, the origin in the interface. 

The displacement in the solid satisfies the equations of linear, isotropic elasticity, 
and having due regard to the symmetry of the problem we consider a normally incident 
wave of the form 

u, = A exp i(wt - kz), u, = u, = 0, (4.2) 
where A is a known constant amplitude. The constant frequency w and the wave 
number k satisfy 

PsWZ = Psk2,  (4.3) 
ps and ps denoting the density and shear modulus of the elastic solid. The reflected wave 
is naturally taken to be 

u, = B exp i(wt + kz), u,, = u, = 0, (4.4) 
with B a constant to be determined. 

It is reasonable to assume that the induced flow in the smectic takes a form similar 
to the motion in the solid, and moreover that this does not disturb the uniform 
alignment of the layers but does excite a corresponding small disturbance of the tilted 
alignment. Consequently in the equations describing the smectic we set 

u, = b exp i(wt - kqz), uY = u, = 0, (4.5) 

(4.6) 

and also 
c, = c exp i(wt - kqz), c, = sin 19, c, = - cos 8, 

with the constants b, c and q to be determined. Clearly these selections are consistent 
with the constraints of equations (2.1H2.3). At the interface we must of course have 
continuity of displacement or equivalently velocity, and also of forces and moments 
acting on the interface. Here, however, we do not appeal to continuity of moments 
directly, but rather employ strong anchoring [lo], which can be regarded as a limiting 
case of a moment condition arising from an interfacial energy (see, for example, 
references in [15] and [16]). At  the interface we therefore assume that the director c is 
prescribed and remains unchanged. 

Consistent with the use of the equations of linear elasticity we assume that the 
disturbances to the smectic crystal are also small, and therefore neglect products of the 
quantities b and c in the relevant equations. In this event the equations of linear 
momentum reduce to 

(4.7) (2piw + qkZq2)b - 2kovqc = 0, 
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where 
Y =(pa + p2 - 22, + 2,) sin2 8 +(pa + p ,  - 22, + A 5 )  cos2 6 

+(z, +z, -z5 -rc,)sin28, (4.8) 

(4.9) 
and 

v =(z, -z5) sin 6 +(A5  -2,) cos 8. 

Also angular momentum simply yields 

with 
ikvqb - (2i0d5 + k2q20)c = 0, (4.10) 

o=K",in28-K',sin26+(K',+K',)cosZ 8. (4.1 1) 

Note that here it is necessary to choose the vector /? of the form 

/I, = 0, p,, = /3 exp i(ot - kqz), B, = 0, (4.12) 

For non-trivial solutions for the unknowns b and c, equations (4.7) and (4.10) lead to 
j being a constant, but y, p and z are all zero. 

a determinantal condition 

(qq2 + 2pi5)(oq2 + 2id55) - 2i5v2q2 = 0, (4.13) 
where 

Alternatively this can be rewritten as a quadratic in q2, 

5 = o/k2. (4.14) 

where 
(4.15) 

(4.16) 

Here, it seems reasonable to assume that 

PO < X, (4.17) 

the elastic coefficients presumably small compared with the viscous coefficients. With 
this assumption the roots of equation (4.15) are approximately 

which provide two values of q with negative imaginary part, necessary to ensure 
bounded solutions. Corresponding to the above values we find that b and c are related 

Xb, = ikavq,c,, pvb, = ikXq,c,, (4.19) 

respectively, these again invoking the approximation (4.17). 
Given that two modes are possible, the interfacial conditions yield 

1 io(A + B) = b, + b,, c1 + c2 = 0, 

&S(A - B) = 1(4 Ib, + %b2)> 

from which it follows that 

2P,(A - B ) / ( A  + B) = iwv(q,b,+ qzbz)/(b1 + bz), 

this reducing with the aid of the approximation in (4.17) to 

( A  - 
with help from equations (4.3), (4.14), (4.18), (4.19) and (4.20). 

+ B )  = i~,X/2PJS5 

(4.20) 

(4.2 1) 

(4.22) 
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130 Invited Lecture: Flow eflects for smectic liquid crystals 

The above clearly allows a measurement of the quantity x/15 or q - ? / I 5 ,  and, by 
varying the angle of inclination of the layers to the interface, we can measure different 
combinations of the viscous coefficients. As Gill and Leslie [ 171 show, it is possible to 
repeat the above calculation for oblique incidence, providing some further opportunity 
for such measurements. 

In the above the displacement induced in the solid is parallel to the interface but 
perpendicular to the plane of symmetry of the smectic C .  However, if the displacement 
is not perpendicular to this plane of symmetry, there are apparently in general no 
simple solutions of the present type for the equations described in section two. This 
presumably indicates that the resulting deformation of the smectic is incompatible with 
the constraints imposed by the present theory, but we do not pursue this question here. 

5. Concluding remarks 
In view of the above, it is of interest to examine briefly small disturbances to uniform 

smectic layering. To this end consider perturbations to the layer normal a' of the form 

a = a' +&a exp i(wt - k - x), (5.1) 

where a and k are arbitrary constant vectors, o a constant, and E a small parameter. It 
follows at once from the constraint in equation (2.1) that 

a' * a = 0, ( 5 4  

kr\a=O. (5.3) 

and from the additional constraint in equation (2.2) that 

Thus, if the vector a is not zero, it must be parallel to the wave vector k as well as normal 
to a'. This of course requires that the wave vector be normal to the unperturbed layer 
normal. Thus the constraints do rather curtail the perturbations that are possible. Such 
considerations may well have relevance to the above phenomenon, and certainly to 
analyses of light scattering based on the theory presented in this paper. 
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